25.04.2024
Антиблокировочная система

Антиблокировочная тормозная система (ABS): что это такое простыми словами

В статье рассказано, как работает антиблокировочная тормозная система (ABS), устройство и принцип ее действия подробно рассмотрен в описании ABS с системой динамической стабилизации легкового автомобиля.

Трудно найти современный авто, который не оборудован антиблокировочной тормозной системой, и знание особенностей ее работы даст возможность узнать, как в критической дорожной ситуации не совершить фатальной ошибки водителями при управлении автомобилем при экстренных торможениях.

Если в вашем автомобиле тормозная система с абс, то для ответа на вопрос: исключает ли антиблокировочная тормозная система возможность возникновения заноса или сноса, рекомендую просто внимательно изучить предложенную информацию до конца.

Антиблокировочная тормозная система: принцип работы

Антиблокировочная тормозная система исключает блокировку колес, в результате чего сохраняется управляемость и курсовая устойчивость автомобиля при сильном торможении, при этом автомобиль реагирует примерно таким же способом, к которому привык водитель во время обычной дорожной ситуации.

Начиная с середины 2004 года, все продаваемые в Европе автомобили серийно оснащены антиблокировочной системой тормозов. Для пояснения принципа действия тормозной системы с ABS имеют значение следующие основные понятия физических параметров движения:

  • тормозной путь;
  • тормозная сила;
  • проскальзывание шины;
  • коэффициент трения;
  • зависимость коэффициента трения от проскальзывания шины;
  • окружность профессора “Камма”.

Тормозной путь (s, в метрах) автомобиля при экстренном торможении зависит от веса автомобиля (m, в килограммах), скорости при начале торможения (v, в метрах в секунду) и тормозной силы (F, в Ньютонах): s = v2 x m / 2 x F. Тормозной путь должен быть минимальным.

При воздействии на педаль тормоза ABS создает тормозную силу, передаваемую через шины на дорожное полотно. Тормозная сила может возрасти настолько, что вращение заторможенного колеса начинает блокироваться.

Окружная скорость свободно вращающегося колеса равна скорости автомобиля. Движение колеса относительно дорожного полотна замедляется или ускоряется под воздействием тормозной силы или силы ускорения, и возникает проскальзывание шины. При блокировке колеса проскальзывание шины составляет 100 %, при свободно катящемся – 0 %.

Тормозной путь

Для достижения минимально возможного тормозного пути шина должна иметь возможность передать на дорожное полотно максимально возможную тормозную силу. Это свойство определяется коэффициентом трения.

Коэффициент трения обозначает соотношение между силой шины, действующей на опорную поверхность (Fn, в Ньютонах), и силой трения (Fr, в Ньютонах), необходимой для движения заблокированного колеса по поверхности дорожного полотна: = Fr / Fn.

Сила, воздействующая на опорную поверхность Fn, определяется общим весом и положением центра тяжести автомобиля. Сила трения Fr зависит от:

  • состава сырья дорожного полотна;
  • характеристик поверхности на дорожных покрытиях;
  • материалов, из которых изготовлены шины;
  • конструкции шин;
  • преобладающего вида трения (трение сцепления, скольжения или качения).

Из-за свойств вискозы, входящей в состав шин, на опорной поверхности шины возникают три различных вида трения с переменным удельным весом. Это приводит к так называемому полусухому трению.

При полусухом трении удельный вес соответствующего вида трения зависит от преобладающего проскальзывания шины.

Так как коэффициент трения зависит от вида трения, то из этого следует, что зависит и от проскальзывания шины. Приведенный ниже простой график поясняет эту мысль.

График трения

Оптимальный коэффициент трения современной шины находится в диапазоне от 15 до 22 % проскальзывания шины (зеленая область). Шина передает на дорожное полотно продольные и поперечные силы. Продольные усилия возникают при разгоне и торможении, а поперечные – при движении в повороте.

Максимальная сила трения шины зависит от деления продольных и поперечных сил. Это означает, что полностью блокированное колесо не в состоянии в дальнейшем принимать на себя силы бокового увода ни при каких обстоятельствах, и автомобиль становится неуправляемым.

Противоположно этому, шина, которая передает максимальную силу бокового увода, более не может передавать на дорожное полотно тормозную силу. Эта взаимосвязь поясняется с помощью так называемой «Окружности профессора Камма».

Окружность Камма

Как работает антиблокировочная тормозная система

С помощью датчиков частоты вращения колес тормозная система с абс контролирует скорость вращения всех колес автомобиля. По этим данным модуль ABS определяет базовую скорость, являющуюся критерием для определения скорости автомобиля.

Если в процессе торможения частота вращения (окружная скорость) какого-либо колеса начинает отличаться от базовой скорости столь значительно, что превышается допустимая величина проскальзывания, то ABS через гидравлическую систему воздействует на величину давления в системе привода тормоза соответствующего колеса.

Для воздействия на тормозное давление в магистралях гидравлика обычной тормозной системы дополняется, в основном, четырьмя конструктивными узлами:

  • впускные клапаны;
  • выпускные клапаны;
  • насос высокого давления;
  • аккумулятор давления.

На рисунке изображено устройство тормозного контура стандартной ABC, которая служит основой для построения более сложных тормозных систем АБС.

Тормозной контур

Фаза повышения давления

При воздействии на педаль тормоза водитель повышает давление в тормозной системе. Впускной и выпускной клапаны находятся в состоянии покоя – впускной клапан открыт, а выпускной клапан закрыт.

Давление прикладывается к колесным тормозным механизмам, и автомобиль начинает замедлять ход.

Фаза удержания давления

Если в процессе торможения величина проскальзывания одного или нескольких колес достигает критического предела, то запускается фаза удержания давления: впускной клапан закрывается.

Давление в тормозной системе, приложенное жидкостью к колесным тормозным механизмам, сохраняется и не может быть повышено водителем через педаль тормоза. Выпускной клапан во время фазы удержания давления продолжает находиться в закрытом положении.

Фаза сброса давления

Если, несмотря на запущенную фазу удержания давления, сохраняется опасность блокировки колеса, то давление, приложенное к колесному тормозному механизму, снижается: открывается выпускной клапан, чтобы давление в тормозной системе могло быть сброшено через обратный шланг.

Впускной клапан остается при этом закрытым, и вытекающая тормозная жидкость попадает в энерго-аккумулятор низкого давления, а блокированное колесо вновь начинает вращение вследствие сниженного давления в тормозной системе.

Фаза повышения давления во время регулирования

Вибрация педали

При запущенном регулировании включается насос высокого давления модуля ABS. Насосом высокого давления тормозная жидкость откачивается из энерго-аккумулятора низкого давления и вновь возвращается в контур регулирования.

Регулирование начинается снова и продолжается до тех пор, пока колесо не придет в состояние покоя, или водитель не снизит давление в тормозной системе настолько, чтобы колесо более не было предрасположено к блокированию тормозом.

Педаль тормоза в течение всего процесса торможения с использованием ABS остается приблизительно в том же положении, в котором она находилась при достижении предельного уровня блокирования колеса. Непрерывный сброс и нагнетание давления ощущаются водителем вибрацией педали тормоза.

Вибрация педали тормоза сигнализирует водителю о задействовании ABC, поэтому у него появляется возможность отреагировать должным образом и привести характер вождения в соответствие с имеющимися дорожными условиями.

Противобуксовочная система: принцип работы

Величина возникающего проскальзывания ведущих колес зависит от подлежащей передаче силы тяги, чем выше величина силы тяги, тем больше проскальзывание шины. Однако при возрастающем проскальзывании шина теряет способность к передаче большой силы тяги. Таким образом, чем сильнее проскальзывает колесо, тем слабее становится сила, разгоняющая автомобиль.

По аналогии с передаваемой силой тяги вместе с возрастающим проскальзыванием ведущих колёс падает и передаваемая сила бокового увода. Следствием сильного проскальзывания ведущих колес может быть боковой занос автомобиля на стороне ведущей оси.

На автомобилях без блокировки дифференциала максимально передаваемую силу тяги, прежде всего, определяет прокручивающееся колесо. Если оба ведущих колеса имеют совершенно разный коэффициент трения, например, одно колесо находится на льду, а другое – на шероховатом асфальте, то стоящее на асфальте колесо не передаст настолько высокую силу тяги, чтобы ее хватило для трогания автомобиля с места.

Пробуксовка колеса

Функция системы контроля тягового усилия интегрирована в модуль ABS, так как необходимые входные сигналы, по большей части, уже используются в электронных ABS. На основании разницы в скорости вращения колес система определяет существующее проскальзывание ведущих и не ведущих колёс.

Регулирующее воздействие различается между системой контроля тягового усилия с воздействием со стороны двигателя и системой контроля тягового усилия с воздействием со стороны тормозной системы. Система контроля тягового усилия с воздействием со стороны двигателя вызывает понижение приводной мощности или мощности двигателя при недопустимо большом проскальзывании ведущих колес.

Понижение мощности двигателя осуществляется модулем управления силовым агрегатом. Модуль антиблокировочной системы тормозов / контроля тягового усилия и модуль управления силовым агрегатом взаимодействуют друг с другом по протоколу передачи данных.

Снижение мощности двигателя производится в зависимости от модели автомобиля под воздействием системы зажигания и/или дозирования топлива и/или активного возврата дроссельной заслонки. Система контроля тягового усилия с воздействием со стороны тормозной системы вызывает затормаживание прокручивающегося колеса с помощью тормозной системы.

В результате затормаживания возникает повышение крутящего момента в силовом агрегате. Повышенный крутящий момент подается через дифференциал на противоположное не прокручивающееся ведущее колесо. Воздействие сравнимо с автоматическим самоблокирующимся дифференциалом.

При нажатии водителем на педаль тормоза система контроля тягового усилия с воздействием со стороны тормозной системы отключается. Возможно возникающее вследствие этого возрастание температуры тормозной системы контролируют на ведущей оси электронным способом при помощи математической модели.

В системе контроля тягового усилия с воздействием со стороны тормозной системы повышение тормозного давления осуществляется гидравлическим блоком ABC. Гидравлическая система антиблокировочной системы тормозов была соответствующим образом модифицирована.

Противобуксовочная система

Тормозные контуры ведущих колес имеют по дополнительному переключающему клапану, отсечному клапану и необходимые системные трубопроводы. Насос высокого давления был усилен для соответствия повышенным требованиям к гидравлическому блоку.

При тормозном управляющем воздействии, вызванном модулем, открывается переключающий клапан во впускном трубопроводе насоса высокого давления, а отсечный клапан закрывается. Приводится в действие насос высокого давления и откачивает тормозную жидкость непосредственно из бачка тормозной жидкости главного тормозного цилиндра.

Давление через синхронизируемый впускной клапан подается на колесный тормозной механизм в рабочие цилиндры. Тормозная система автомобиля подвергается повышенной нагрузке под влиянием системы контроля тягового усилия с воздействием со стороны тормозной системы, поэтому система контроля тягового усилия отключается при достижении температурой тормозной системы критического предельного значения.

При этом факторами влияния являются скорость автомобиля, давление в тормозной системе и длительность тормозящего воздействия. Водитель информируется об этом соответствующим индикатором на приборном щитке. Система контроля тягового усилия вновь готова к работе при охлажденной тормозной системе.

Во все более возрастающем количестве в современных системах контроля тягового усилия комбинируется воздействие со стороны ABC и со стороны двигателя. Таким образом, может быть достигнуто оптимальное тяговое усилие при достаточно бережном отношении к тормозной системе.

Система динамической стабилизации

Электронная система поддержания курсовой устойчивости оказывает активное влияние на динамику движения автомобиля в предельных диапазонах. Для получения более ясного представления о принципах работы системы динамической стабилизации (ESP) кратко поясняются следующие основные понятия по динамике движения:

  1. Поперечное ускорение.
  2. Момент рыскания.
  3. Рыскание.
  4. Недостаточная поворачиваемость.
  5. Избыточная поворачиваемость.
  6. Поперечное ускорение.

При движении в кривой на автомобиль действует центробежная сила. Величина центробежной силы зависит от веса автомобиля и ускорения, действующего в поперечном направлении по отношению к направлению движения.

Это поперечное ускорение в свою очередь, зависит от скорости автомобиля и радиуса кривой поворота. При чрезмерно сильном возрастании поперечного ускорения, автомобиль выносит из кривой.

Основные понятия динамики движения

Возникающей в повороте центробежной силе противодействует сила бокового увода шин. При устойчивом движении в повороте действующая центробежная сила равна сумме переданных сил бокового увода.

Если центробежная сила превышает сумму передаваемых сил бокового увода, то автомобиль теряет устойчивость, т.е. автомобиль более не следует по траектории, выбранной водителем.

Доля центробежной силы, превышающая передаваемую силу бокового увода, вместе с приложенным к центру тяжести автомобиля плечом рычага образует крутящий момент. Этот крутящий момент, называемый также моментом рыскания, стремится повернуть автомобиль вокруг вертикальной оси.

Скорость вращения вокруг вертикальной оси авто называется рысканием. Величина рыскания зависит от момента рыскания и массы автомобиля. В зависимости от направления вращения момента рыскания автомобиль при движении в кривой описывает больший или меньший радиус, чем тот, который соответствовал повороту передних колес.

Потеря управления

Если автомобиль описывает больший радиус кривой, то есть автомобиль выталкивает из кривой передними колесами, то речь идет о недостаточной поворачиваемости. Недостаточная поворачиваемость в предельном диапазоне возникает, как правило, на автомобилях с передним приводом.

Если автомобиль описывает меньший радиус кривой, то есть автомобиль выталкивает из кривой задними колесами, то речь идет об избыточной поворачиваемости. Избыточная поворачиваемость в предельном диапазоне возникает, как правило, на автомобилях с приводом на задние колёса.

Способ регулирования

Для пояснения способов регулирования остановимся подробно на вопросах: какие действия применяет ABC в зависимости от возникновения экстремальной дорожной ситуации при управлении автомобилем.

К основным элементам ESP относятся: датчик угла поворота рулевого колеса; датчик поперечного ускорения; датчик рыскания. Датчики электронной системы поддержания курсовой устойчивости могут быть объединены в две группы: датчики, отслеживающие динамические характеристики автомобиля, соответствующие намерениям водителя:

  • датчик угла поворота рулевого колеса;
  • датчики скорости вращения колеса.

Датчики, которые специально устанавливаются в автомобиле для работы системы ESP, отслеживают действительные динамические характеристики автомобиля:

  • датчик рысканья автомобиля;
  • датчик поперечного ускорения.

Для электронной системы поддержания курсовой устойчивости, как и для системы контроля тягового усилия, используется большинство компонентов антиблокировочной системы колесных тормозов.

Модуль антиблокировочной системы тормозов/электронной системы поддержания курсовой устойчивости по датчику угла поворота руля и частоте вращения колес определяет задаваемую водителем дорожную ситуацию и вычисляет подходящие для нее значения поперечного ускорения и величины рыскания.

Если рассчитанные значения начинают отличаться от действительных величин, фиксируемых датчиками рысканья и поперечного ускорения, то стабильность дорожной ситуации нарушается, и осуществляется регулирующее воздействие на отдельные колесные тормозные механизмы.

Схема зависимости

A Динамические характеристики, соответствующие намерениям водителя. B Действительные динамические характеристики автомобиля. 1. Угол поворота и скорость поворота рулевого колеса. 2. Сигналы частоты вращения колес. 3. Рыскание. 4. Поперечное ускорение. 5. Модуль электронной системы поддержания курсовой устойчивости / блок регулирования. 6. Колесный тормозной механизм.

Регулирующее воздействие при недостаточной поворачиваемости

Недостаточная поворачиваемость

При недостаточной поворачиваемости производится тормозное управляющее воздействие на внутреннее по отношению к повороту колеса. Переднее колесо затормаживается до сближения с оптимальным значением величины проскальзывания (возможно более высокий коэффициент трения).

Возникающая тормозная сила с помощью эффективного плеча рычага между площадью контакта шины и центром тяжести автомобиля образует крутящий момент, приводящий к повороту автомобиля вовнутрь кривой. Заднее колесо затормаживается с сильным проскальзыванием для того, чтобы целенаправленно сократить силу бокового увода на задней подвеске.

Вследствие этого центробежная сила, действующая при движении по кривой, может поддерживать вращательное движение автомобиля. В то же самое время для придания устойчивости автомобилю снижается мощность двигателя воздействием на систему управления двигателем.

Регулирующее воздействие избыточной поворачиваемости

Избыточная поворачиваемость

При избыточной поворачиваемости осуществляется тормозное управляющее воздействие, прикладываемое ко внешним по отношению к повороту колесам, при этом переднее колесо затормаживается с сильным проскальзыванием для уменьшения активных сил бокового увода на передней подвеске.

Заднее колесо затормаживается с оптимальным проскальзыванием для того, чтобы, используя возникающий рычаг, вывернуть автомобиль наружу из кривой. Мощность двигателя вновь снижается соответствующим образом для придания устойчивости автомобилю.

Регулирующее воздействие для стабилизирования прицепа

При движении по сигналам датчика угла поворота рулевого колеса и датчика рыскания, электронная система поддержания курсовой устойчивости распознает виляния прицепа.

С помощью взаимного (правого/левого) торможения и дополнительно, при необходимости, снижения мощности двигателя, скорость машины с прицепом снижается до тех пор, пока не прекратятся колебания прицепа.

Регулирующее воздействие для предотвращения опрокидывания

Опрокидывание автомобиля

При внезапном, очень резком объезде препятствия, существует возможность опрокидывания, и в этом случае передние колеса поочередно подтормаживаются, одновременно крутящий момент двигателя снижается до нуля.

Это вмешательство в работу тормозной системы и двигателя производит под регулирование и уменьшает скорость, что позволяет уменьшить поперечное ускорение и, соответственно, наклон, ведущий к опрокидыванию.

Как только опрокидывающий наклон предотвращен, прекращается вмешательство в работу управления тормозами и двигателем. Внезапный объездной маневр с опрокидыванием распознается по согласованности сигналов датчика угла поворота рулевого управления и датчика рыскания/поперечного ускорения.

Регулирующее воздействие динамического движение по кривой

При быстром прохождении поворотов возможно проворачивание колес, вызванное влажностью, неровностями поверхности полосы движения или слишком малом радиусе поворота дороги. При обычном контроле тягового усилия возможно предотвращение проворачивания внутреннего колеса поворота при снижении крутящего момента двигателя.

Скорость движения автомобиля ограничивается сцеплением внутреннего колеса поворота с поверхностью дороги, а при динамическом регулировании движения на повороте в такой ситуации выполняется торможение внутреннего колеса поворота. Таким образом, больший крутящий момент этого колеса переносится на внешнее колесо.

Увеличивается маневренность автомобиля, улучшаются его ходовые качества и возрастает чувствительность к повороту рулевого колеса. Так как электронная система поддержания курсовой устойчивости работает с более высокими величинами проскальзывания чем ABS, то тормозная активность со стороны электронной системы поддержания курсовой устойчивости превалирует.

При соразмерно высоком давлении в тормозной системе, к регулированию со стороны электронной системы поддержания курсовой устойчивости подключается автоматически регулируемое торможение со стороны модуля управления ABS.

Выводы

Если в автомобиле установлена антиблокировочная тормозная система, повышается безопасность в критических ситуациях, возникающих при вождении автомобиля, но нельзя забывать, что если автомобиль оборудован системой ABC, то это не исключает основную роль водителя предотвращать аварийные ситуации при управлении автомобилем – тормозная система с ABC только помощник на дороге!

Не превышайте скорость движения, все равно везде не успеете, а сбережешь секунду – потеряешь жизнь. Чем выше профессионализм водителя, тем реже нога встречается с педалью тормоза и требуется замена тормозных колодок.

Выполняйте главное правило дорожного движения ДДД (3 Д) и удачи на дорогах. Поделитесь в комментариях – приходилось ли Вам ощущать работу ABS при торможении и как она помогла в критической ситуации.

С уважением, Олег!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Don`t copy text!